Open Access Journal

ISSN : 2394 - 6849 (Online)

International Journal of Engineering Research in Electronics and Communication Engineering(IJERECE)

Monthly Journal for Electronics and Communication Engineering

Open Access Journal

International Journal of Engineering Research in Electronics and Communication Engineering(IJERECE)

Monthly Journal for Electronics and Communication Engineering

ISSN : 2394-6849 (Online)

Controller Tuning for Integrator Plus Delay Processes

Author : B. S. Patil 1 Dr. L. M. Waghmare 2 Dr. M. D. Uplane 3

Date of Publication :11th May 2017

Abstract: design method for PID controllers base on internal model control (IMC) principles, direct synthesis method (DS), stability analysis (SA) system for pure integrating process with time delay is proposed. Analytical expressions for PID controllers are derived for several common types of process models, including first order and second-order plus time delay models and an integrator plus time delay model. Here in this paper, a simple manager design rule and tuning procedure for unstable processes with delay time is discuss. Simulation examples are included to show the effectiveness of the proposed method. The SIMC rules are logically resulting, and from a first or second order process we can simply find the pi and PID controller setting, respectively. Even though the rule was originally derived largely with ease in mind, recent studies have establish that the resulting setting are very close to optimal (Grimholt and Skogestad, 2012, 2013). For the twice integrating process, the SIMC rule gives the pid setting for the serial form.

Reference :

    1. Chien, L. and Fruehauf, P. S. 1990. ConsiderIMC tuning to improve performance.ChemEngProgr, 10: 33-41.
    2. Fuentes, C. and Luyben, W. L. 1983.Control of high purity distillation columns.IndEngChem Process Des Dev,22: 362.
    3. Srividya, R. and Chidambaram, M. 1997.On line controller tuning for integratorplus delay processes. Process ContrQual, 9: 59-66.
    4.  Astrom, K. J., and Haggl and, T. 1995.―PID controllers: Theory, Design and Tuning”, Instr Soc. America, North Carolina.
    5. Yu, C. C. 1999. ―Auto Tuning of PID controllers”, Springer-Verlag, Berlin
    6. Ziegler, J. G. and Nichols, N. B. 1942.Optimum settings for automatic controllers. Trans ASME, 64: 759-765.
    7. Tyreus, B.D. and Luyben, W.L. 1992.Tuning PI controllers for integrator/dead-time processes. IndEngChem Res,31: 2625.
    8. Chidambaram, M. 1994. Design of PIcontroller for integrator/dead-time processes.Hungar J IndChem, 22: 37.
    9. Poulin, E. and Pomerleau, A. 1999. PIsettings for integrating processes basedon ultimate cycle information. IEEE Trans ContrSyst Tech, 7: 509.
    10.  Luyben, W. L. 1996. Design of ProportionalIntegral and Derivative controllers for integrating dead-time processes. IndEngChem Res, 35: 3480.
    11. Wang, L. and Cluette, W.R. 1997. Tuning PID controllers for integrating processes.IEE ProcContrTheorAppl, 144: 385.
    12. Kookos, I. K., Lygros, A. I., and Arvanitis,K. G. 1999. On-line PI controller tuningfor integrator / dead time processes.Eur J Contr, 5: 19.
    13.  Wang, Y.G. and Cai, W.J. 2002. Advanced proportional integral derivative tuning for integrating and unstable processes with gain and phase margin specifications .IndEngChem Res, 41:2910-2914.
    14. Visioli, A. 2001. Optimal tuning of PID controllers for integral and unstable processes. IEE ProcContrTheorAppl,148: 180.
    15. Zhang, W., Xu, X., and Sun, Y. 1999.Quantitative performance design for integrating processes with time delay. Automatica, 35: 719-723.
    16. Ali, A. and Majhi, S. 2010. PID controller tuning for integrating processes. ISA Trans, 49: 70-78.
    17. Rivera, D.E., Morari, M., and Skogestad, S. 1986. Internal Model Control – 4, PIDcontroller design. IndEngChem Process Des Dev, 25: 1684.
    18. Skogestad, S. 2003. Simple analytical rules for model reduction and PID controllertuning. J Process Contr, 13: 291-309.
    19. Shamsuzzoha, Md. and Lee, M. 2008. PID controller design for integrating processes with time delay. Kor J Chem Eng, 25, 4: 637-645.
    20. Sung, S.W. and Lee, I.B. 1996. Limitations and counter measures of PID controllers. Ind Eng Chem Res, 35: 2596- 2610.

Recent Article