Author : Nandupriya P N 1
Date of Publication :16th February 2018
Abstract: This paper presents a compact microstrip patch antenna for the frequency bands 3.2, 4.5, 6.2 and 7.1 GHz. The resonant modes for WiMAX and C-band applications are achieved by using metamaterial inspired split ring structure and complementary split ring structure. The proposed antenna with a compact size of 27 mm × 25 mm is designed. The extraction procedure of negative permeability for the proposed metamaterial structure is discussed.
Reference :
-
- Rajeshkumar V, Raghavan S, “A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications,” International Journal of Electronics and Communications (AEÜ), 69 (2015) 274–280
- Liua W-C, Wua C-M, Chu N-C, “A compact low profile dual-band antennafor WLAN and WAVE applications,” AEU Int J Electron C 2012;66:467–71.
- Su S-W, “Compact four loop antenna system for concurrent, 2.4 and 5 GHz WLAN operation,” Microw Opt Technol Lett 2014;56(1):208–15.
- Chien HY, Sim CYD, Lee CH, “Dual band meander monopole antenna for WLAN operation in laptop computer,” IEEE Antennas Wirel Propag Lett 2013;12:694–7
- Huang C-Y, Yu E-Z, “A slot monopole antenna for dual band WLAN applications”, IEEE Antennas Wirel Propag Lett 2011;10:500–2.
- Ghatak R, Mishra RK, Poddar DR, “Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11a/b WLAN application,” IEEE Antennas Wirel Propag Lett 2008;7:742–5.
- Xu Y, Jiao Y-C, Luan Y-C, “Compact CPW-fed printed monopole antennawith triple band characteristics for WLAN/WiMAX applications,” Electron Lett 2012;48(24):1519–20.
- Sim CYD, Chen HD, Chiu KC, Chao CH, “Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications,” IET Microw Antenna Propag 2012;6(14):1529–35.
- Basaran SC, Olgun U, Sertel K, “Multiband monopole antenna with complemen-tary split ring resonators for WLAN and WiMAX applications,” Electron Lett 2013;49(10):636–8.
- Zhang X-Q, Jiao Y-C, Wang W-H, “Compact wide tri-band slot antenna for WLAN/WiMAX applications,” Electron Lett 2012;48(2):64–5.
- Li X, Shi X-W, Hu W, Fei P, Yu J-F, “Compact triband ACS fed monopole antenna employing open ended slots for wireless communication,” IEEE Antennas Wirel Propag Lett 2013;12:388–91.
- Liu P, Zou Y, Xie B, Liu X, Sun B, “Compact CPW fed triband printed antenna with meandering split ring slot for WLAN/WiMAX applications,” IEEE Antennas WirelPropag Lett 2012;11:1242–4.
- Xu H-X, Wang G-M, Liang J-G, Qi M-Q, Gao X, “Compact circularly polarized antennas combining metasurfaces and strong space-filling meta-resonators,” IEEE Trans Antennas Propag 2013;61(7):3442–50.
- Xu H-X, Wang G-M, Qi M-Q, “A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity,” Prog ElectromagnRes 2013;137:275–92.
- Xu H-X, Wang G-M, Qi M-Q, Zhang C-X, Liang J-G, Gong J-Q, et al. “Analy-sis and design of twodimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas,” IEEE TransAntennas Propag 2013;61(2):735–47.
- Xu H-X, Wang G-M, Lv Y-Y, Qi M-Q, Gao X, Ge S. Multifrequency monopoleantennas by loading metamaterial transmission lines with dual-shunt branchcircuit. Prog Electromagn Res 2013;137:703–25.
- Basaran SC, Erdemli YE. A dual band split ring monopole antenna for WLANapplications. Microw Opt Technol Lett 2009;51(11):2685–8.
- Dong Y, Toyao H, Itoh T. Design and characterization of miniaturized patchantennas loaded with complementary split ring resonators. IEEE Trans Anten-nas Propag 2012;60(2):772–5.
- Xiong J, Li H, Jin Y, Sailing H. Modified TM020mode of a rectangular patchantenna partially loaded with metamaterial for dual band applications. IEEEAntennas Wireless Propag Lett 2009;8:1006–9.
- Zhu J, Eleftheriades GV. Dualband metamaterial inspired smallmonopole antenna for WiFi applications. Electron Lett 2009;45(22):1104–6.
- Smith DR, Schultz S, Markos P, Soukoulis CM. Determination of negative per-mittivity and permeability of metamaterials from reflection and transmissioncoefficients. Phys Rev B 2002;65:195104–9.
- Chen H, Zhang J, Bai Y, Luo Y, Ran L, Jiang Q, et al. Experimental retrieval ofthe effective parameters of metamaterials based on a waveguide method. OptExpress 2006;14(26):12944–9.
- Smith DR, Vier DC, Koschny T, Soukoulis CM. Electromagnetic parame-ter retrieval from inhomogeneous metamaterials. Phys Rev B 2005;71:36617–27.