Author : Arpan Kumar Das 1
Date of Publication :14th May 2019
Abstract: Using DNA microarray technology, biologists get a large number of gene expression time series data. Clustering is a significant approach in extracting biological information from these data. This paper discusses HMM-based hierarchical clustering (HMM-HC) and Genetic clustering algorithm (GA) to analyse gene expression time series data. Some key research challenges associated with clustering analysis are also included.
Reference :
-
- Dongmin Seo, Yunsoo Choi, Min-Ho Lee, Seok-Jung Yu, ―Development of biological network crawling, clustering and visualization system‖, International Conference on Electrical Engineering/Electronics, Computer, Telecom and IT,pp.726-728,2017
- Amutha Priya and R. Lawrence, ―Algorithm for clustering analysis of gene expression data using MapReduce framework‖, International Conference on Data Storage and Data Engineering, pp.1-4, 2016
- Zhinwen Yu, Hanato Chen, Jiming,Wong, Han and Li, ―Adaptive Fuzzy consensus clustering framework for cluster analysis of cancer data‖, IEEE Transactions on Computational Biology and Bioinformatics,pp.1-14,2013
- Liming Wang and Xiaodong Wang, ―A Non-parametric Bayesian clustering for Gene expression data‖, IEEE Statistical Signal Processing Workshop, pp.556-559, 2012
- Damodar Edla,Seshaiah Machavarapu and Prasanta Jana, ―An Improved MST based clustering for Biological data‖,International Conference on Data Science and Engineering‖, pp.42-45,2012
- Ricardo Campello, Davoud Moulavi and Jorg Sander, ―A simpler and more accurate framework for clustering and visualization of biological data‖, IEEE Transactions on Computational Biology and Bioinformatics,Vol.9,No.6,pp.1850-1852,Nov/Dec.2012
- Xiao Zhang, Aichen Li, You Zhang and Yongpeng Xiao, ―Validity of Cluster technique for Genome expression data‖, Chinese Control and Decision Conference, pp.3737-3741, 2012
- Suvendu Kanungo, Gagadhar Sahoo and Manoj Gore, ―A Co-clustering technique for Gene expression data using Bi-partite Graph approach‖, IEEE Statistical Signal Processing Workshop, pp.1-5, 2010
- Guoqing Zhao and Wei Dang, ―An HMM based hierarchical clustering method for gene expression time series data‖, IEEE Statistical Signal Processing Workshop, pp.219-222, 2010
- Gunjan Gupta, Alexander Liu and Joydeep Ghosh, ―Automated hierarchical density shaving:A robust automated clustering and visualization framework for large biological data sets‖,IEEE Transactions on Computational Biology and Bioinformatics, Vol.7, No.2, April/May, 2010
- R. Xu, S. Damelin, B. Nadler, D. C. Wunsch II, "Clustering of highdimensional gene expression data with feature filtering methods and diffusion maps," Artificial Intelligence in Medicine, vol. 48, pp. 91-98, 2010.
- A. Mukhopadhyay, U. Maulik, 'Towards improving fuzzy clustering using support vector machine: Application to gene expression data," Pattern Recognition, vol. 42, pp. 2744-2763, 2009.
- Hae-Sang Park and,Chi-Hyuck Jun,‖A simple and fast algorithm for k-medoids clustering,‖ Expert System with applications,3336- 3341,2009.
- Amit Banerjee and Sushil J.Louis,‖ A Recursive Clustering Methodology using a genetic algorithm‖, IEEE Trans., 2007.
- L. Wang, F. Chu, W. Xie, "Accurate cancer classification using expressions of very few genes," IEEEIACM Transactions on Computational Biology and Bioinformatics, vol. 4 , issue I, pp. 40-53, 2007.
- C.M. Yang, B.K. Wan, X.F. Gao, "Internal validation technology research of the gene clustering result," Progress in Natural Science, vol. 17, no. 9, pp. 1181-1188,2007.
- H. J. Lin, F. W. Yang and Y. T. Kao‖, An efficient GAbased clustering technique, ―Tamkang Journal of Science and Engineering, vol. 8, no. 2,pp. 113-122, 2005.
- C. C. Lai,‖A novel clustering approach using hierarchical genetic algorithms,‖ Intelligent Automation and Soft Computing, vol. 11, no. 3,pp. 143-153, 2005.
- A. Schliep, I.G. Costa, C. Steinhoff, A. Schonhuth, "Analyzing gene expression time-courses," IEEEIACM Transactions on Computational Biology and Bioinformatics, vol. 2, no. 3, pp. 179-193,2005.
- X. Sun, Z.H. Lu, J.M. Xie, Foundation of bioinformatics, G.X. Chen, C.M. Zhao, Ed. Beijing, China: Tsinghua University Press, 2005.
- E. R. Hruschka, R. J. G. B. Campello, and L. N. de Castro,‖Improving the efficiency of a clustering genetic algorithm, In Advances in Artificial Intelligence,‖ IBERAMIA 2004, volume 3315 of LNCS, pages 861–870, 2004.
- Jiawei Han and M.kamber‖, Data mining: Concepts and Techniques,‖Morgan Kaufmann,2004.
- E.R. Hruschka, N.F.F. Ebecken,‖A genetic algorithm for cluster analysis‖,Intell. Data Anal. 7 (1) 15–25., 2003.
- Z. Shi, G. Joydeep, "A unified framework for modelbased clustering," Journal of Machine Learning Research, vol. 4, no 6, pp. 1001--I037, 2003
- N. Bolshakova, F. Azuaje, "Cluster validation techniques for genome expression data," Signal Processing, vol. 83, pp. 825-833,2003.
- S. Bandyopadhyay and U. Maulik,‖An evolutionary technique based on K-means algorithm for optimal clustering in RN,‖ Information Sciences,vol. 146, no.1-4, pp. 221-237,2002
- Y. Xu, V. Olman, D. Xu, "Clustering gene expression data using a graph-theoretic approach, an application of minimum spanning trees," Bioinformatics, vol. 18, no. 4, pp. 536-545,2002.
- L. Y. Tseng and S. B. Yang,‖A genetic approach to the automatic clustering algorithm,‖ Pattern Recognition, vol. 34, no. 2, pp. 415- 424,2001
- B.S. Everitt, S. Landau, M. Leese,‖Cluster Analysis,‖ Arnold Publishers, London, 2001.
- P. Baldi and S. Brunak, Bioinformatics: The machine learning approach, 2nd ed., T. Dietterich, Ed. London, England: The MIT Press, 2001.
- KY. Yeung, D.R. Haynor, W.L. Ruzzo, "Validating clustering for gene expression data," Bioinformatics, vol. 17, no. 4, pp. 309-318, 2001.
- V. R. Iyer, M. B. Eisen, D.T. Ross, G. Schuler, T. Moore, J.C. F. Lee, J.M. Trent, L. M. Staudt, HJ. James, M.S. Boguski, D. Lashkari, D. Shalon, D. Botstein, P.O. Brown, "The transcriptional program in the response of human fibroblasts to serum," Science, vol. 283, pp. 83-87, 1999.