Author : Sujithra.B.S 1
Date of Publication :30th September 2020
Abstract: This review paper focuses on detection of glaucoma by learning and understanding different image processing techniques used till now. Glaucoma is disease related with human eyes. It is difficult to identify glaucoma until it reaches severe vision loss, because it shows zero symptoms at the early stage. Due to this factor this disease became the second leading cause of blindness after cataract in world wide. A comprehensive dilated eye exam can reveal the risk factors of glaucoma such as high eye pressure, thickness of cornea and abnormality in optic nerve. But, the challenging factor is functional changes in fundus of the eye cannot be easily tracked and hence the only way is identifying the structural changes of eye with the help of image processing technologies. This study would be helpful and applicable to both ophthalmologists in practice and researchers in the same field to enhance the diagnosis. This paper conclude that, combining most relevant features which are notable for structural changes of eye with Retinal Nerve Fiber Layer (RNFL) thickness alone can be more effective and provide promising accuracy in glaucoma detection.
Reference :
-
- Jiag Liu, Tin Aung, Mani Baskaran, Conference paper of IEEE Engg. In Medicine and Biology Science July, 2015.
- H. Fu, Y. Xu, S. Lin, X. Zhang, D. Wong, J. Liu, and A.Frangi,” IEEE Trans. Med. Image., vol. 36, no. 9, pp. 1930–1938, 2017.
- Muhammad Nauman Zahoor and Muhammad Moazam Fraz Volume 5, 2169-35362017 IEEE.
- Abhishek Pal, Manav Rajiv Moorthy and A. Shahina, Image Processing (ICIP) 2018, 25th IEEE Int.Conf. On pp. 2775-2779, 2018.
- H. Fu, D. Xu, S. Lin, D. W. K. Wong, and J. Liu, “Automatic optic disc detection in oct slices via low-rank reconstruction,” IEEE Transactions on Biomedical Engineering, vol. 62, pp. 1874 – 1886, Apr 2015
- D. Zhang and Y. Zhao, “Novel accurate and fast optic disc detection in retinal images with vessel distribution and directional characteristics,” IEEE Journal of Biomedical and Health Informatics, vol. 20, pp. 2168 – 2194, Jan 2016.
- Sharanagouda Nawaldgi,”Review of Automated Glaucoma Detection Techniques”, (Wisp NET), IEEE International Conference, 2016.
- Namita Sengar, Malay Kishore Dutta, Radim Burget and Martin Ranjoha, “Automated Detection of Suspected Glaucoma in Digital Fundus Images”, IEEE International Conference on Tele Comm. And Signal Processing, 2017
- H. Fu, J. Cheng, Y. Xu, D. Wong, J. Liu, and X. Cao, “Joint Optic Disc and Cup Segmentation Based on Multi-label Deep Network and Polar Transformation,” IEEE Trans. Med. Image., 2018.
- A. Sevastopolsky, “Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network,” Pattern Recognition and Image Analysis, vol. 27, no. 3, pp. 618–624, 2017.
- K. P. Noronha, U. R. Acharya, K. P. Nayak, R. J. Martis, and S. V. Bhandary, Biomedical Signal Processing and Control, vol. 10, no. 1, pp. 174–183, 2014.
- Xu, Y., Lin, S., Wong, T.Y., Liu, J., Xu, D.: In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 445– 452. Springer, Heidelberg (2013)
- A. Salazar-Gonzalez, D. Kaba, Y. Li, and X. Liu, IEEE Journal of Biomedical and Health Informatics, vol. 18, pp. 1874 – 1886, Nov 2014.
- Niladri Halder, Dibyendu Roy, Arnab Chattaraj, Tanumoy Chowdhury. Vol. 3, Issue 3, March 2015
- Shruti P Y, Sharangouda.N, International Journal of Advanced Research Vol. 4, Issue 6, June 2015
- Maı’la Claro, Leonardo Santos, Wallinson Silva Fl´avio Araujo, Nayara Moura CLEI Electronic Journal, Volume 19, Num ber 2, Paper 4, August 2016
- Khalil, T., Akram, M. U., Khalid, S., & Jameel, A. (2017). Computing Conference.
- Diptu, N. A., Khan, M. A., Debnath, S., Imam, A. A., Rakib, A. M. H., Ahmed Ador, K. A., & Rahman, R. M. (2018). International Conference on Intelligent Systems (IS).
- Pavithra, G., Manjunath, T. C., Krishnananda, & Lamani, D. (2017). IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)
- An, G., Omodaka, K., Tsuda, S., Shiga, Y., Takada, N., Kikawa, T Akiba, M. (2018). Journal of Healthcare Engineering, 2018, 1–8.
- Yousefi, S., Goldbaum, M. H., Balasubramanian, M., Medeiros, F. A., Zangwill, L. M., Liebmann, J. M. Bowd, C. (2014). IEEE Transactions on Biomedical Engineering, 61(7), 2112–2124
- Nikam, S. M., & Patil, C. Y. (2017). 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA)
- Khalil, T., Khalid, S., & Syed, A. M. (2014). Science and Information Conference.
- Soltani, A., Battikh, T., Jabri, I., Mlouhi, Y., & Lakhoua, M. N. (2016). International Conference on Control, Decision and Information Technologies (CoDIT).
- Panda, R., Puhan, N. B., Rao, A., Padhy, D., & Panda, G. (2017). IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).
- Yousefi, S., Goldbaum, M. H., Balasubramanian, M., Tzyy-Ping Jung, Weinreb, R. N., Medeiros, F. A. Bowd, C. (2014). IEEE Transactions on Biomedical Engineering, 61(4), 1143–1154
- Kim, P. Y., Iftekharuddin, K. M., Davey, P. G., Toth, M., Garas, A., Hollo, G., & Essock, E. A. (2013). IEEE Journal of Biomedical and Health Informatics, 17(2), 269–276.
- Carrillo, J., Bautista, L., Villamizar, J., Rueda, J., Sanchez, M., & rueda, D. (2019). XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA)
- Yu, S., Xiao, D., & Kanagasingam, Y. (2018. IEEE Journal of Biomedical and Health Informatics, 22(3), 886–894.
- Jiang, Y., Tan, N., & Peng, T. (2019. IEEE Access, 1–1
- Orlando, J. I., Prokofyeva, E., & Blaschko, M. B. (2017). IEEE Transactions on Biomedical Engineering, 64(1), 16–27.
- Aloudat, M., Faezipour, M., & El-Sayed, A. (2019 IEEE Journal of Translational Engineering in Health and Medicine, 7, 1–13.
- Haleem, M. S., Han, L., van Hemert, J., Li, B., & Fleming, A. (2015). IEEE Journal of Biomedical and Health Informatics, 19(4), 1472–1482.
- Ashame, L. A., Youssef, S. M., & Fayed, S. F. (2018). International Conference on Computer and Applications (ICCA).
- Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K., Tan, N.-M., Wong, T. Y. (2013). IEEE Transactions on Medical Imaging, 32(6), 1019–1032.