Open Access Journal

ISSN : 2394 - 6849 (Online)

International Journal of Engineering Research in Electronics and Communication Engineering(IJERECE)

Monthly Journal for Electronics and Communication Engineering

Open Access Journal

International Journal of Engineering Research in Electronics and Communication Engineering(IJERECE)

Monthly Journal for Electronics and Communication Engineering

ISSN : 2394-6849 (Online)

Interactive Effect of NaCl Salinity and Zinc on Growth and Development of Catharanthus Roseus (L.)

Author : P. V. Gaikwad 1 S. B. Bhamburdekar 2

Date of Publication :16th September 2021

Abstract: Salinity is a major abiotic stress that adversely affect plant growth. In the present investigation the effect of various concentration of NaCl salinity, Zn and their interactive effect on growth of Catharanthus roseus was investigated. The shoot length, root length, total length, number of leaves and leaf area per plant decreased with increasing NaCl concentration and increased with application of zinc. However in interactive effect, Zn mitigates the toxic effects of NaCl, especially with lower concentration of Zn i.e. 5 ppm and 10 ppm as compare to 25 ppm and 50 ppm Zn, which improves growth of Catharanthus roseus.

Reference :

    1. Ada, A.A., Yeo, A.R. and Okusanya, O.T. (1994): The response to salinity of a population of Dactyloctenium aegyptium (L.) from a saline habitat in Southern Nigeria. J.Trop.Ecol., 10: 219-228.
    2. Ahmad, P., Abass Ahanger, M., Nasser Alyemeni, M., Wijaya, L., Egamberdieva, D., Bhardwaj, R. and Ashraf, M. (2017): Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. Journal of Plant Interactions, 12(1): 429-437.
    3. Alam, S. M.and Shereen, A . (2002). Effect of different levels of zinc and phosphorous on growth and chlorophyll content of wheat. Asian Journal of Plant Sciences, 1:364- 366
    4. Begg, T.E. and Turner, N.C. (1976): In, Advances in Agronomy Vol. 28, pp. 161, Brady, N.C. (Ed.) Academic Press, New York.
    5. Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I.and Lux, A. (2007). Zinc in plants, New Phytologist, (173): 677-702.
    6. Chowdhary, F.M.T., Halim, M. A., Hossain Feroza and Akhtar Nahid (2018). Effect of sodium chloride on germination and seedling growth of sunflower (Helianthus annus L.). Jahangirnagar University J. Biol. Sci., 7(1): 35-44.
    7. Davidson, D.J. and Chevalier, P.M. (1987). Influence of polyethylene glycol induced water deficits on tiller production in spring wheat. Crop Sci, (27): 1185-1187
    8. El – Mansi, A. A., El – Beheidi, M. A., El – Sawah, M. H. and Swidan, S.A. (1990). The importance of interaction of NAA, Boron and Zinc on peas. 1. Plant growth and pigments contends. Zagazig J. Agric Res., 17: 361-368
    9. Farahat, M. M., Soad Ibrahim., M. M., Taha, L.S. and Fatma El-Quesni, E.M. (2007). Response of vegetative growth and some chemical constituents of Cupressus sempervirens L. to foliar application of ascorbic acid and zinc at Nubaria. World Journal of Agricultural Sciences, 3 (4): 496-502.
    10. Francois, L.E., Donovan, T.J. and Mass, E.V. (1992): Yield, vegetative growth and fibre length of kenaf grown on saline soil. Agron. J., 84: 592-598
    11. Gouia, H., Ghorbal, M.H. and Touraine, B. (1994): Effects of NaCl on flows of N and mineral ions and on No-3 reduction rate within whole plants of salt sensitive bean and salt tolerant cotton. Plant Physiol., 105: 1409-1418.
    12. Gunes, A., Alpaslan, M., Cikilin, Y. and Ozcan, H. (1999). Effect of zinc on the alleviation of Boron toxicity in tomato. J. Plant Nutr., (22):1061-1068
    13. Hajlaoui, H., Denden, M. and Bouslama, M. (2006). Effect du chlorure de sodium sur les criteres morpho-physiologiques et productifs du pois chiche (Cicer arietinum). Institut National de Recherches en Genie Rural, Equx et forets, 8: 171 – 187.
    14. Hannon, N. and Baradshaw, A.D. (1968): Evolution of salt tolerance in two coexisting species of grass. Nature, 220: 1342-1343.
    15. He, T. and Cramer, G.R. (1993): Growth and ion accumulation of two rapid cycling Brassica species differing in salt tolerance. Plant and Soil., 153: 19- 31.
    16. Hezaveh, T.A., Pourakbar, L.,Rehmani, F. and Alipour, H. (2019). Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapseed (Brassica napus L.). Communications in soil Science and Plant Analysis, 50 :698- 715.
    17. Hussein, M. M. and Baker N. H. (2014). Growth and minerals status of moringa plants as affected by silicates and salicylic acid under salt stress. Int. J. Plant Soil Sci, 3: 163- 177.
    18. Hussein, M. M. and Baker N.H. (2018). Contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal society open science, 5: 171809.
    19. Hussein, M., Embiale, A., Husen, A., AreFIM and Iqbal, M. (2017). Salinity induced modulation of plant growth and photosynthetic parameters in Vicia faba cultivars. Pak J. Bot, 49(3): 867 – 877
    20. Jaleel, C. A., Gopi, R., Manivannan, P. and Panneerselvam, R. (2007). Antioxidant potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turk J. Bot, 31 pp: 245-251
    21. Jaleel, C. A., Gopi, R. and Manivannan, P. (2008): Soil salinity alters the morphology in Catharanthus roseus and its effects on endogenous mineral constituents. EurAsian Journal of BioSciences, 2 pp: 18-25.
    22. Jaleel, C.A., Sankar, B., Sridharan., R. and Panneerselvam, R. (2008). Soil salinity alters growth, chlorophyll content and secondary metabolite accumulation in Catharanthus roseus. Turk J. Bot, 32 pp: 79-83
    23. Jamil, M., Bae, L.D., Yong, J.K., Ashraf, M., Chun, L.S. and Shik, R.E.(2006):Effect of salt(NaCl) stress on germination and early seedling growth of four vegetable species. Journal of Central European Agriculture, 7:273-282
    24. Karim, M.A., Nawata, E. and Sigenaga, S. (1993). Effect of salinity and water stress on the growth, yield and physiological characteristics in hexaploid triticale. Jpn. J. Trop. Agric, (37): 46-52
    25. Khajesh-Hosseni, M., Powell, A. A. and Bimgham, I.J. (2003). The interaction between salinity stress and seed vigor during germination of soybean seeds. Seed Sci. Technol, (31): 715-725.
    26. Khan, M.A. and Rizvi, Y. (1994): Effect of salinity, temperature and growth regulators on the germination and early seedling growth of Atriplex griffithi var. Stocksii. Can. J. Bot., 72: 475-479.
    27. Khan, M. A., Ungar, I. A. and Showlter, A. M.(2000). The effect of salinity on growth, water status and ion content of a leaf succulent perennial halophyte Sueda friticosa L. J. Arid Environ, 45: 73-84
    28. Kosesakal, T. and Unal, M. (2012). Effect of zinc toxicity on seed germination and plant growth in tomato (Lycopersicon esculentum). Fresenium Environmental Bulletin, 21 (2): 315 to 324
    29. Kurian, T. (1976): Effect of supplemental irrigation with sea water on growth and chemical composition of pearl millet (Pennisetum typhoides S. et H.). Z. Pflanzenphysiol.Bd., 79: 377-383.
    30. Latef, A. A. H. A. and Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127(3): 228-233
    31. Marschner, H. (2012). Mineral nutrition of higher plants, second edition, London: Academic press.
    32. Meiri, A. and Poljakoff-Mayber, A. (1970): Effect of various salinity regimes on growth, leaf expansion and transpiration rate of bean plants. Soil Sci., 109: 26-34
    33. Memon, S. A., Hou, X. and Wang, L. J. (2010). Morphological analysis of salt stress response of Pak Choi. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(1) : 248-254.
    34. Minhas, P.S., Sharma, D.R. and Khosla, B.K. (1990): Effect of alleviation of salinity stress at different growth stages of Indian mustard (Brassica juncea). Indian J. Agric. Sci., 60: 343-346.
    35. Mishra, P Bhoomika, K Dubey RS (2013): Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma, 250(1): 3-19.
    36. Muhammad Ali.,Yasir Niaz.,Gulam Hassan Abbasi., Salman Ahmad., Zaffar Malik et al.,(2021). Exogenous Zinc induced NaCl tolerance in Okra (Abelmoschus esculentus) by ameliorating osmotic stress and oxidative metabolism. Communications in Soil Science and Plant Analysis, DOI:10.1080/00103624.2020.1869761.
    37. Nigwekar, A.S. and Chavan, P.D. (1987): The influence of sodium chloride salinity on the growth and mineral nutrition of horsegram, Dolichos biflorus L. Acta. Soc. Bot. Pol., 56 (1): 93-100
    38. Nukaya, A. (1983): Salt tolerance studies in muskmelon and other vegetables. Technical Bulletin No.8. Department of Horticulture, Faculty of Agri., Shizuoka University, Japan. pp.1-97.
    39. Okusanya, O.T. and Oyesiku, O. (1994): Comparative salinity tolerance of two legumes, Vigna lueteola and Vigna vexillata, from the coast of Trinidad. Can. J. Bot., 72: 1216- 1221.
    40. Parkar, D.R., Aguilera, J.J. and Thomason D.N. (1992). Zinc Phosphorus interaction in two cultivars of tomato (Lycopersicon esculentum L.) grown in chelato-buffered nutrient solution. Plant soil, (193): 163-177.
    41. Prasad, K. and Saradhi, P. P. (1995). Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry, 39(1) : 45-47
    42. Ramezani, M., Seghatoleslami, M., Mousavi, G.and Sayyari-Zahan, M.H. (2012).Effect of salinity and foliar application of iron and zinc on yield and water use efficiency of Ajowan (Carum copticum).Intl. J. Agric. Crop. Sci. 4:421-426.
    43. Ratnakar, A. and Rai, A. (2013). Effect of Sodium chloride salinity on seed germination and early seedling growth of Trigonella foenum-graecum L. var. Peb. Oct. Jour. Env. Res, 1 (4): 304-309.
    44. Rawson, H.M. (1986): Gas exchange and growth in wheat and barley grown in salt. Aust. J. Plant Physiol., 13: 475-489
    45. Razzaque, M. A., Talukder, N. M., Islam, M. T., and Datta R. K. (2011). Salinity effect on mineral nutrient distribution along roots and shoots of rice (Oryza sativa L.) genotype differing in salt tolerance. Archive of Agronomy and Soil Science, 57: 33-45.
    46. Redondo-Gomez, S., Luis Andrades, Moreno. and Ricardo, Aroca. (2011). Synergic effect of salinity and zinc stress on growth and photosynthetic responses of Spartina densiflora. Journal of Experimental Botany, 62 (15): 5521 – 5530.
    47. Rostami,M.,Talarposht, R.M.,Mohammadi, H.and Demyan, M.S.(2019).Morpho- physiological response of Saffron (Crocus sativus L.) to particle size and rate of zinc fertilizer. Communications in Soil Science and Plant Analysis, 50:1250-1257.
    48. Sagardoy, R., Morales, F., Lopez-Milan, A.F., Abadia A. and Abadia J. (2009). Effect of zinc toxicity on sugarbeet (Beta vulgaris L.) Plant grown in hydroponics. Plant Biology, 11(3): 339-350.
    49. Said-Al Ahl, H. A. H. and Mahmoud, A.A. (2010). Effect of zinc and/ or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean J. Appl. Sci, 3:97-111
    50. Sharma, P., Kumaranand, N. and Bisht, S. (1994). Effect of zinc deficiency on chlorophyll content, photosynthesis and water relations of cauliflower plants. Photosynthetica Journal, (30): 353 – 359.
    51. Singh, A., Singh, B.B.and Patel, C. S. (1992): Response of vegetable pea (Pisum sativum) to zinc, boron and molybdenum in an acidi Alsifol of Meghalaya. Indian Journal of Agronomy, 37(3):615- 616.
    52. Sri Vasuki, K.P., Rao, V.S. and Rao, K.N.V. (1980): Effect of micronutrients and their interactions on growth and alkaloid production in Catharanthus roseus: Proc.Indian Acad. Sci. Plant Sci., 89 (3): 197-202
    53. Szopinski, M., Sitko, K., Gieron, Z. and Rusinowski, S. (2019). Toxic effects of Cd and Zn on the photosynthetic apparatus of Arabidopsis halleri and A. arenosa pseudo- metallophytes. Frontiers in Plant Science. Vol. 10, article 748.
    54. Taleisnik, E.L. (1987): Salinity effects on growth and balance in Lycopersicon esculentum and L. pennellii. Physiol . Plant., 71: 213-218
    55. Vaillant, N., Monnet F., Hitmi A., Sallanon H. and Coudret, A. (2005). Comparative study of in four Datura species to a zinc stress. Chemosphere, 59 : 1005-1013.
    56. Vafa, Z.N., Sirousmehr, A.R., Ghanbari, A., Khammari, E. and Falahi,N. (2015): Effect of nanozinc and humic acid in quantitative and qualitative characteristics of savory (Satureja hortensis L.). Int. J. Bio Sci, 6:124-136.
    57. Wu, G. Q., Jiao, Q. and Shui, Q.Z. (2015). Effect of salinity on seed germination, seedling growth and inorganic solutes accumulation in sunflower (Helianthus annus L.). Plant, Soil and Environment, 61: 220-226
    58. Xiong, L. and Zhu, J. K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ, 25(2): 131-139.
    59. Yadav, N. and Sharma, Y. (2018).Enrichment of Fe density in barley (Hordeum vulgare) grain with iron foliar application. J Plant Physiol Pathol. 6:3

Recent Article