Open Access Journal

ISSN : 2394 - 6849 (Online)

International Journal of Engineering Research in Electronics and Communication Engineering(IJERECE)

Monthly Journal for Electronics and Communication Engineering

Open Access Journal

International Journal of Engineering Research in Electronics and Communication Engineering(IJERECE)

Monthly Journal for Electronics and Communication Engineering

ISSN : 2394-6849 (Online)

A Survey on Correlation Filter and its Applications

Author : Neenu Jose 1 Nandakumar P 2

Date of Publication :7th May 2016

Abstract: Correlation filters will find applications in pattern recognition such as biometric recognition, object alignment, action recognition, object detection and tracking. The advanced correlation filters were introduced to offer distortion-tolerant object recognition. The recent major advance in correlation filter design is zero-aliasing correlation filters (ZACFs) that eliminate the aliasing in correlation filter design due to the circular correlation caused by the use of discrete Fourier transforms (DFTs).

Reference :

  1. [1] C. Rother, T. Minka, A. Blake, and V. Kolmogorov.Cosegmentation of image pairs by histogram matching – incorporating a global constraint into MRFs. In Proc. of Conf. onComputer Vision and Pattern Recognition, 2006.

    [2] L. Mukherjee, V. Singh, and C. R. Dyer. Halfintegralitybased algorithms for cosegmentation of images. In Proc. ofConf. on Computer Vision and Pattern Recognition, 2009.

    [3] J. Z. Wang, J. Li, and G. Wiederhold.SIMPLIcity:semantics-sensitive integrated matching for picture libraries.Trans. on Pattern Anal.and Machine Intel., 23(9), 2001.

    [4] J. Cui, Q. Yang, F. Wen, Q. Wu, C. Zhang, L. Van Gool, andX. Tang. Transductive object cutout.In Proc. of Conf. onComputer Vision and Pattern Recognition, 2008.

    [5] J. Sun, S.B. Kang, Z.B. Xu, X. Tang, and H.Y. Shum. FlashCut: Foreground Extraction with Flash and No-flash ImagePairs. In Proc. of Conf. on Computer Vision and PatternRecognition, 2008.

    [6] D. S. Cheng and M. A. T. Figueiredo. Cosegmentation forimage sequences.In Proc. of International Conf. on ImageAnal.and Processing, 2007.

    [7] A. C. Gallagher and T. Chen.Clothing cosegmentation forrecognizing people.In Proc. of Conf. on Computer Visionand Pattern Recognition, 2008.

    [8]. Dorit S. Hochbaum,Vikas Singh, “An efficient algorithm for Co-segmentation”.

    [9] A. Sirageldin, A. Selamat, R. Ibrahim, Graph–based simulated annealing and supportvector machine in malware detection, in: M. F. Harun, A. Selamat (Eds.), 5th MalaysianConference in Software Engineering (MySEC), IEEE Comp. Soc., Johor Bahru, 2011,pp. 512–515.

    [10] K. M. Borgwardt, C. S. Ong, S. Schonauer, S. V. N. Vishwanathan, A. J. Smola, H. P.Kriegel, Protein function prediction via graph kernels, Bioinformatics 21 (2005) i47– i56.


  2. [1]. B.V.K. Vijaya Kumar, M. Savvides, C. Xie. Correlation pattern recognition for face recognition. Proceedings of the IEEE, 94(11), 1963-1976, 2006

    [2]. B.V.K. Vijaya Kumar,”Correlation pattern recognition”. Cambridge University Press, 2005

    [3]. A. Mahalanobis, B.V.K. Kumar, D. Casasent. Minimum average correlation energy filters. Applied Optics, 26(17): 3633- 3640, 1987.

    [4]. A. Mahalanobis, B. V. K. Vijaya Kumar, S. Song, S. R. F. Sims, and J. F. Epperson. Unconstrained correlation filters. Applied Optics, 33(17):3751_3759, 1994.

    [5]. Ph. Réfrégier. Filter design for optical pattern recognition: multicriteria optimization approach. Opt. Lett., 15(15):854_856, 1990.

    [6]. Ph. Réfrégier and J. Figue. Optimal trade-off filters for pattern recognition and their comparison with the wiener approach. Optical Computing and Processing, 1(3):245_266, 1991.

    [7]. M. Savvides and B. V. K. Vijaya Kumar. Efficient design of advanced correlation filters for robust distortion tolerant face recognition. In IEEE Conf. Advanced Video and Signal Based Surveillance, 2003.

    [8]. D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual object tracking using adaptive correlation filters. In IEEE Conf. Computer Vision and Pattern Recognition, 2010.

    [9]. A. Rodriguez, V. N. Boddeti, B. V. K. Vijaya Kumar, and A. Mahalanobis. Maximum margin correlation filters: A new approach for localization and classification. IEEE Trans. Image Processing, 22(2):631_643, 2013.

    [10]. D.S. Bolme, J.R. Beveridge, B.-A. Draper, et al. Visual object tracking using adaptive correlation filters. In CVPR, pages: 2544-2550, 2010.

    [11]. A. Rodriguez, V.N. Boddeti, B.V.K. Vijaya. Kumar, and A. Mahalanobis. Maximum Margin Correlation Filter: A New Approach for Localization and Classification. IEEE Transactions on Image Processing, 22(2): 631-643, 2013.

    [12]. Joseph A. Fernandez, Andres Rodriguez, Vishnu Naresh Boddeti and B. V. K. Vijaya Kumar, “Recent advances in correlation filter theory and applications” .

    [13]. A. Rodriguez and B. V. K. Vijaya Kumar. Dealing with circular correlation effects. In Proc. SPIE, 2013.

    [14]. Subramania I. Sudharsanan, Abhijit Mahalanobis, and Malur K. Sundareshan. Unified framework for the synthesis of synthetic discriminant functions with reduced noise variance and sharp correlation structure. Optical Engineering, 29(9):1021_1028, 1990.

    [15]. Joseph A. Fernandez, V. N. Boddeti, and B. V. K. Vijaya Kumar,“ zero aliasing correlation filters for object recognition”, IEEE transaction on pattern analysis and machine intelligence,volume 37, 2015.

    [16]. Humera Rafique, Samina Rafique,” Review of correlation based algorithms in signal and image processing for pattern identification”, International Journal of GEOMATE, Nov. 2016, Vol. 11, Issue 27, pp. 2695- 2703.

    [17]. David S. Bolme J. Ross Beveridge Bruce A. Draper Yui Man Lui,”Visual object tracking using adaptive correlation filters”.


Recent Article