Open Access Journal

ISSN : 2394 - 6849 (Online)

International Journal of Engineering Research in Electronics and Communication Engineering(IJERECE)

Monthly Journal for Electronics and Communication Engineering

Open Access Journal

International Journal of Engineering Research in Electronics and Communication Engineering(IJERECE)

Monthly Journal for Electronics and Communication Engineering

ISSN : 2394-6849 (Online)

Comparison of Filters for Despeckle With Improved Speckle Reducing Antiscopic Diffusion Filter for Ultrasound Images

Author : Stafford Michahial 1 Dr Bindu A Thomas 2

Date of Publication :7th May 2016

Abstract: Due to the presence of speckle noise leads to the poor quality of the US images. The presence of speckle noise makes it difficult to understand the information contain in the US image hence filtering of US image is required to improve the image quality. The paper gives us the comparison of different filters techniques (linear filter (lf),Anisotropic Diffusion(AD),Nonlinear filter kuwahara(Kuwa) ,median filter(med),hybrid median filter(hmed) , Lee Filter &kaun, frost filter, Wavelet based speckle reduction methods, speckle reducing anisotropic diffusion filter (srad),improved srad(Israd). 65 texture feature, image intensity normalization, 15 image quantitative metrics and image quality evaluation. It is observed that the Israd, improves the image quality of liver, kidney, uterus, live mass ultrasound images.

Reference :

  1. [1] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image qualityassessment: from error measurement to structuralsimilarity, IEEE Trans. Image Process. 13 (4) (2004) 600–612.

    [2] T. Elatrozy, A. Nicolaides, T. Tegos, A. Zarka, M. Griffin, M.Sabetai, The effect of B-mode ultrasonic imagestandardization of the echodensity of symptomatic andasymptomatic carotid bifurcation plaque, Int. Angiol. 17 (3)(1998) 179–186.

    [3] C.P. Loizou, Ultrasound Image Analysis of the Carotid Artery,Applications in Ultrasound Filtering, Segmentation andTexture Analysis, Lambert Academic Publishing GmbH & Co.KG, Saarbruecken, Germany, 2012.

    [4] C.P. Loizou, C.S. Pattichis, Despeckle Filtering Algorithmsand Software for Ultrasound Imaging. Synthesis Lectures onAlgorithms and Software for Engineering, Morgan &Claypool Publishers, San Rafael, CA, USA, 2008.

    [5] C.P. Loizou, C.S. Pattichis, C.I. Christodoulou, R.S.H.Istepanian, M. Pantziaris, A.N. Nicoliades, Comparativeevaluation of despeckle filtering in ultrasound imaging ofthe carotid artery, IEEE Trans. Ultrason. Feroelctr. Freq.Control 52 (2) (2005) 1653– 1669.

    [6] C.M. Wu, Y.C. Chen, K.-S. Hsieh, Texture features forclassification of ultrasonic images, IEEE Trans. Med. Imaging11 (1992) 141–152.

    [7] C.I. Christodoulou, C.S. Pattichis, M. Pantziaris, A.N.Nicolaides, Texture-based classification of atheroscleroticcarotid plaques, IEEE Trans. Med. Imaging 22 (7) (2003)902–912.

    [8] R.M. Haralick, K. Shanmugam, I. Dinstein, Texture featuresfor image classification, IEEE Trans. Syst. Man Cybernet. 3(1973) 610–621.

    [9] E. Kyriakou, M.S. Pattichis, C. Christodoulou, C.S. Pattichis, S.Kakkos, M. Griffin, A.N. Nicolaides, Ultrasound imaging inthe analysis of carotid plaque morphology for theassessment of stroke, in: J.S. Suri, C. Yuan, D.L. Wilson, S.Laxminarayan (Eds.), Plaque Imaging: Pixel to MolecularLevel, IOS Press, Amsterdam, Netherlands, 2005,pp. 241–275.

    [10]J. Grosby, B.H. Amundsen, T. Hergum, E.W. Remme, S.Langland, H. Trop, 3D speckle tracking for assessment ofregional left ventricular function, Ultrasound Med. Biol. 35(2009) 458–471.

    [11]J.A. Noble, N. Navab, H. Becher, Ultrasonic image analysisand image quided interventions, Interface Focus 1 (2011)673–685.

    [12]C.P. Loizou, C.S. Pattichis, M. Pantziaris, T. Tyllis, A.N.Nicolaides, Quality evaluation of ultrasound imaging in thecarotid artery based on normalization and speckle reductionfiltering, Med. Biol. Eng. Comput. 44 (5) (2006) 414–426.

    [13]C.P. Loizou, C.S. Pattichis, A.N. Nicolaides, M. Pantziaris,Manual and automated media and intima thicknessmeasurements of the common carotid artery, IEEE Trans.Ultrasound Ferroelectr. Freq. Control 56 (5) (2009) 983–994.

    [14]C.P. Loizou, C.S. Pattichis, M. Pantziaris, T. Tyllis, A.N.Nicolaides, Snakes based segmentation of the commoncarotid artery intima media, Med. Biol. Eng. Comput. 45 (1)(2007) 35–49.

    [15]C.P. Loizou, C.S. Pattichis, M. Pantziaris, A.N. Nicolaides, An integrated system for the segmentation of atheroscleroticcarotid plaque, IEEE Trans. Inform. Technol. Biomed. 11 (6)(2007) 661–667.

    [16]C.P. Loizou, C. Theofanous, M. Pantziaris, T. Kasparis, P.Christodoulides, A.N. Nicolaides, C.S. Pattichis, Despecklefiltering toolbox for medical ultrasound video, Int. J. Monitor.Surveillance Technol. Res. (IJMSTR) 4 (1) (2014) 61–79,Oct.-Dec. 2013 (Special issue on Biomedical MonitoringTechnologies).

    [17]C.P. Loizou, T. Kasparis, P. Christodoulides, C. Theofanous,M. Pantziaris, E. Kyriakou, C.S. Pattichis, Despeckle filteringin ultrasound video of the common carotid artery, in: 12thInternational Conference on Bioinformatics &Bioengineering Processing (BIBE), Larnaca, Cyprus,November 11–13, 2012, p. 4.

    [18]C.P. Loizou, M. Pantziaris, C.S. Pattichis, E. Kyriakou, M-modestate-based identification in ultrasound videos of thecommon carotid artery, in: Proceedings of 4th InternationalSymposium on Communication Control & Signal Processing, ISCCSP, Limassol, Cyprus, March 3–5, 2010, p. 6.

    [19]C.P. Loizou, C.S. Pattichis, S. Petroudi, M. Pantziaris, T.Kasparis, A.N. Nicolaides, Segmentation of atheroscleroticcarotid plaque in ultrasound video, in: 34th AnnualInternational Conference on IEEE Engineering Medicine and Biology, EMBC, San Diego, USA, August 28– September 1,2012, p. 4.

    [20] P.H. Davis, J.D. Dawson, M.B. Biecha, R.K. Mastbergen, M.Sonka, Measurement of aortic intimalmedia thickness inadolescents and young adults, Ultrasound Med. Biol. 36 (4)(2010) 560–565.

    [21]E. Heiberg, J. Sjogren, M. Ugander, M. Carlsson, H. Engblom,K. Arheden, Design and validation of a segment-freelyavailable software for cardiovascular image analysis, BMCMed. Imaging 10 (1) (2010) 1–13.

    [22]E.C. Kyriakou, C.S. Pattichis, M.A. Karaolis, C.P. Loizou, M.S.Pattichis, S. Kakkos, A.N. Nicolaides, An integrated systemfor assessing stroke risk, IEEE Eng. Med. Biol. Mag. 26 (5)(2007) 43–50.

    [23]F. Molinari, K.M. Meiburger, J. Suri, Automatedhighperformance cIMT measurement techniques using patented AtheroEdgeTM: a screening and home monitoring system, in: 33rd Annual International Conference on IEEE EMBS, Boston, USA, 2011, pp. 6651–6654.

    [24]X.G. Xu, Y.H. Na, T. Zhang, Design and test of a PCbased 3D ultrasound software system Ultra3D, Comp. Biol. Med. 38 (2) (2008) 244–251.

    [25]R. Cardenes-Almeida, A. Tristan-Vega, G.V.-S. Ferrero, S.A. Fernandez, et al., Usimagtool: an open source freeware software for ultrasound imaging and elastography, in: International Work on Multimodal Interfaces, eNTERFACE, Istambul, Turkey, 2007, pp. 117–127.

    [26]J.S. Lee, Digital image enhancement and noise filtering by using local statistics, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2 2 (1980) 165–168.

    [27]V.S. Frost, J.A. Stiles, K.S. Shanmungan, J.C. Holtzman, A model for radar images and its application for adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell. 4 (2) (1982) 157–165.

    [28]M. Kuwahara, K. Hachimura, S. Eiho, M. Kinoshita, in: K. Preston, M. Onoe (Eds.), Digital Processing of Biomedical Images, Plenum Publishing Corporation, New York, 1976, pp. 187–203.

    [29]L.J. Busse, T.R. Crimmins, J.R. Fienup, A model based approach to improve the performance of the geometric filtering speckle reduction algorithm, in: IEEE Ultrasonic Symposium, 1995, pp. 1353–1356.

    [30]A. Nieminen, P. Heinonen, Y. Neuvo, A new class of detail-preserving filters for image processing, IEEE Trans. Pattern Anal. Mach. Intell. 9 (1987) 74–90.

    [31]P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell. 12 (7) (1990) 629–639.

    [32]A. Panayides, M.S. Pattichis, C.S. Pattichis, C.P. Loizou, M. Pantziaris, A. Pitsillides, Atherosclerotic plaque ultrasound video encoding, wireless transmission, and quality assessment using H.264, IEEE Trans. Inform. Technol. Biomed. 15 (3) (2001) 387– 397.

    [33]Y. Yongjian, S.T. Acton, Speckle reducing anisotropic diffusion, IEEE Trans. Image Process. 11 (11) (2002) 1260–1270.

    [34]A Philips medical system company, Comparison of image clarity, SonoCT Real-time Compound Imaging Versus Conventional 2D Ultrasound Imaging, ATL Ultrasound Report, 2001.

    [35]A.N. Nicolaides, M. Sabetai, S.K. Kakkos, S. Dhanjil, T. Tegos, J.M. Stevens, The asymptomatic carotid stenosis and risk of stroke study, Int. Angiol. 22 (3) (2003) 263–272.

    [36]J.S. Weszka, C.R. Dyer, A. Rosenfield, A comparative study of texture measures for terrain classification, IEEE Trans. Syst. Man Cybernet. 6 (1976) 269–285.

    [37]M. Amadasun, R. King, Textural features corresponding to textural properties, IEEE Trans. Syst. Man Cybernet. 19 (5) (1989) 1264–1274.

    [38]D.G. Altman (Ed.), Practical Statistics for Medical Research, Chapman & Hall, London, 1991.

    [39]C.P. Loizou, T. Kasparis, P. Papakyriakou, L. Christodoulou, M. Pantziaris, C.S. Pattichis, Video segmentation of the common carotid artery intimamedia complex, in: 12th International Conference on Bioinformation& Bioengineering Process (BIBE), Larnaca, Cyprus, November 11–13, 2012, p. 4.

    [40]V. Zlokolica, W. Philips, van de Ville, Robust nonlinear filtering for video processing, IEEE Proc. Vision Imag. Signal. Process. 2 (2) (2002) 571–574.

    [41]V. Zlokolica, A. Pizurica, W. Philips, Recursive temporal denoising and motion estimation of video, Int. Conf. Image Process. 3 (3) (2008) 1465–1468.

    [42]E. Brusseau, C.L. De Korte, F. Mastick, J. Schaar, A.F.W. van der Steen, Fully automatic luminal contour segmentation in intracoronary ultrasound imaging – a statistical approach, IEEE Trans. Med. Imaging 23 (5) (2004) 554–566.

    [43]J.A. Noble, A. Boukerroui, Ultrasound image segmentation: a survey, IEEE Trans. Med. Imaging 25 (8) (2006) 987–1010.

    [44]A. Fenster, A. Zahalka, An automated segmentation method for three-dimensional carotid ultrasound images, Phys. Med. Biol. 46 (2001) 321–1342.

    [45]L. Chrzanowski, J. Drozdz, M. Strzelecki, M.Krzeminska-Pakula, K.S. Jedrzejewski, J.D. Kasprzak, Application of neural networks for the analysis of intravascular ultrasound and histological aortic wall appearance – an in vitro tissue characterisation study, Ultrasound Med. Biol. 34 (1) (2008) 103–113.

    [46]M. Strzelecki, P. Szczypinski, A. Materka, A. Klepaczko, A software tool for automatic classification and segmentation of 2D/3D medical images, Nucl. Instrum. Method Phys. Res. 702 (2013) 137–140.

    [47]A.M.F. Santos, R.M. Dos Santos, P.M.A. Castro, E. Azevedo, et al., A novel algorithm for the segmentation of the lumen of the carotid artery in ultrasound B-mode images, Expert Syst. Appl. 40 (2013) 6570–6579.

    [48]K. Potter, D.J. Green, C.J. Reed, R.J. Woodman, et al., Carotid intima-media thickness measured on multiple ultrasound frames; evaluation of a DICOM-based software system, Cardiovasc. Ultrasound 5 (29) (2007) 1–10.

    [49]P.M. Szczypin´ ski, M. Strzelecki, A. Materka, A. Klepaczko, MaZda – a software package for image texture analysis, Comp. Methods Prog. Biomed. 94 (1) (2008) 66–76


Recent Article